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SUMMARY 

The flow of an inviscid, compressible, perfect gas along a sinus-shaped wall is used as a model to shed light 
into the long-standing transonic controversy. The solution of the small-disturbance approximation for the 
velocity potential is developed as a formal series in the similarity parameter k. Forty terms in k were ob- 
tained, delegating the computational work to a computer. The coefficients of the maximal-speed series turn 
out to be moments with positive weight on a finite interval of support. This implies 

= _ f b dw 
Uraax ~ an kn  

n=O - J a  1--kx 

The solution of the classical moment problem, i.e. the recovering of the weight distribution, shows that --a = 
b = like,  with k c as the critical value of the parameter, at which the flow first becomes sonic, k e has been 
determined as 0.8253, the four digits being regarded as definite. It follows that Urea x as a function of k is 
analytic on (-- k c, k c) and has exactly two singularities located on the real axis at k = - k c and k = k e. It is 
known from the theory of moments that there does not exist an analytic continuation on the real axis 
exceeding the interval. This means that the velocity depends analytically on the parameter as long as the local 
velocity of sound is nowhere reached, but that the exceeding of it is marked by termination of analyticity 
and, to this degree, is critical Thus, the view that there will not exist a transonic potential flow having neigh- 
boar solutions is supported. The smallness of the weight distribution at the interval ends (at least at k = -- k c 
it is even exponentially small, giving an exponentially small singularity of Urea x) is the key to explaining, 
within the scope of the inviscid model, the shoeldess exceeding of the critical value by some per cent seen in 
numerical calculations and experiments. 

1 The transonic controversy 

About 50 years ago G.I. Taylor [1] raised the question whether an observed breakdown of flow 

near the critical Math number occurs because irrotational flow ceases to be possible or occurs 

for some other reason connected with viscosity or other properties of the air not considered in 

the theory. Realising experimentally by electrical analogy an iteration procedure similar to that 

of  Rayleigh-Janzen, he observed a breakdown of convergence when the free-stream Math num- 

ber exceeded the critical one by 3--4%, likewise for flow about a circular cylinder and that past 

an airfoil. A local calculation giving the same result convinced him that the failure of conver- 

gence was not due to the method of successive approximations but was indeed caused by non- 

existence of solutions. Concerning the accuracy of the approximations and experiments, it 
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remained open whether the critical Mach number might be exceeded by some per cent or not 
at all. 

During the following years some explicit solutions to the inviscid, compressible-flow equation 
were found. These solutions were analytical functions of the co-ordinates and described shock- 
free flow with local supersonic enclosures [2-6].  They gave rise to the opinion that the local 
velocity of sound was not critical for smooth potential flow. But Busemann [7, 8], Guderley 
[9] and Frankl [10] published arguments supporting the view that these transonic flows were 
exceptional, having no shock-free neighbours if the physical data, i.e. the free-stream Mach 
number or the contour, were slightly changed and therefore were without physical significance. 
Indeed, they did not allow the physical parameters to vary independently, because they were 
completely constructed by the indirect hodograph method. The boundary is not known in the 
hodograph (velocity plane); only particular solutions of the (linear) equation can be found, and 
the profile has to be realised afterwards as a streamline. The hodograph method was also used 
by C.S. Morawetz, who proved in a series of papers [11 ] conjectures on the non-existence of 

smooth transonic flow. But her proofs did not match the full requirements on the admissible 
class of distortions, especially on the smoothness of a contour variation, and thus could not 
decide the transonic controversy, a term first used by L. Bers [12]. A critique is found in the 

book by Ferrari and Tricomi [13]. After all these attempts to decide the controversy using the 
hodograph method, Tricorni expressed the opinion that this approach would never succeed and 
that one would deal better with the non.linear equation in the physical plane [14]. 

In contrast to theoretical arguments, there are several experiments and numerical investi- 
gations that seem to contradict the non-existence conjectures; Koppe's impressive experiments 
[15] and the numerical results of Nocilla et al. [16] should be mentioned. In connection with 
'practical' shock-free transonic airfoils constructed within the last decade, it was recently stated 
by Sobieczky et al. [17] that their numerical results imply the existence of infinitely many 
'numerical shockless' neighbour configurations, a statement that does not necessarily contradict 
the conjectures, which claim that the boundary-value problem is not well posed. But the con- 
troversy is too delicate a 'problem - as will be confirmed here - to admit a solution by dis- 
cretisation methods for the mixed non-linear equation. Questioning the idealised inviscid model 

may seem to offer an easy explanation of the encountered discrepancies, but the model itself 
is probably just insuffiently explored by mathematical analysis. L. Bers reasoned that: 'Ex- 
perience shows that in most cases the value of an idealized model can not be assessed a priori. 
Only after the mathematics of the model has been sufficiently explored can one tell under 
which circumstances the model gives a satisfactory description of physical reality and in which 
cases it fails' [18]. 

Indeed, the following analysis will show that the discrepancy between theoretical arguments 
for non-existence of smooth transonic flow and the mentioned observations could be explained 

within the scope of the inviscid model. 

2. Parameter expansion 

As already pointed out, the non-existence conjectures contend that the mixed boundary-value 
problem is ill posed: its solution cannot depend continuously on the free-stream Math number 
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or on boundary data. Therefore, it seems promising to look for a solution as an expansion into 
one of these parameters. For the flow about a cylinder the M 2 -expansion, or Rayleigh-Janzen, 
method has extensively been used; recently Van Dyke and Guttmann got 29 terms in M 2 for a 
circular cylinder [19]. For the flow along thin airfoils, an expansion into a thickness parameter 
is suitable and offers in addition the use of a transonic approximation. The first term of the M 2- 

expansion gives the incompressible case; for the thickness-parameter expansion it is identical 

with the Prandl-Glauert rule. Both methods produce successive approximations as solutions of 
purely elliptical equations, and it has therefore been doubted [12] that the limit could be a 

solution to the mixed elliptic-hyperbolic problem. But even if that were to be substantiated, 

there could be an analytical continuation over the critical value of the parameter. The ana- 

lyticity in the parameter - not merely the convergence - is the real subject of an analysis of 
the series. 

In 1978 Van Dyke and Guttmann analysed 19 terms of the maximum-speed series for the 

circular cylinder and came to the conclusion that it was convergent at about 4% above the 

critical Mach number [20]. But the analysis of the scheme of extrapolations for the radius of 

convergence showed a strange drifting not in accordance with conditions it was based on. Milton 
Van Dyke suggested to me that I look at the thickness-ratio expansion for the flow along a 
wavy wall. Indeed, the corresponding series revealed exactly the same behaviour. Analysing 
recently 29 terms of the M 2- series, Van Dyke and Guttmann [19] claim now that it is con- 
vergent at 1.1% above the critical Mach number. But they could not extract the nature of the 

singularity limiting the convergence. 

3. Transonic flow past a sine-shaped wall 

The flow past a wavy wall, a simple model due to the periodicity in one co-ordinate has been 

the object of several theoretical and experimental investigations [21, 22, 23]. In spite of the 
simplicity of its sine shape, no explicit solution is known. This simple model seems to be well 

suited for argumentation within the transonic controversy, since a variation of the thickness 
parameter (or equivalently the amplitude) is an analytical deformation of the geometry. Further, 

it allows one to go over to the transonic small-disturbance approximation bearing the name of 

yon Karman [24]. This is considered exact for a double limit in the free.stream Mach number 

and the thickness ratio throughout the flow field (there are no stagnation points). This approxi- 
mation has been chosen, since the computational complexity is reduced. For a subsonic free- 

stream Mach number (M~ < 1) with the y-coordinate scaled by (1 - -M~) 1/2 the small-distur- 
bance approximation can be formulated as 

(1 - -k0x)¢xx  + 0 ~  = 0. (1) 

Here k = z(~, + 1) (1 - - M ~ )  -a/2 is the transonic similarity parameter (usually k -2/a is defined 



200 

Y 

¢.:¢,--m0 at Y:+** i 
...j... u¢.<1 
¢,  >i'"... ~ x 

Figure 1 Boundary conditions. 

as similarity parameter, admitting also Moo > 1) r = 2rt amplitude/wavelength = the thickness 

parameter, Moo = free stream Mach number and 7 = adiabatic ratio. 

Equation (1) is elliptic for small k, 1 -- k~x > 0, and hyperbolic for 1 -- kCx < 0. The 

equation 1 --k~bx = 0 defines the sonic line. 

As long as the equation is elliptic at every point, it can be assumed that there exists a unique 

solution which is analytical in the co-ordinates and in the parameter k; the maximum of the 
velocity will be reached at the peak of the curve, even though there seems to be no proof 

covering exactly this configuration. For the mixed problem, where the equation is allowed to 

be locally hyperbolic a uniqueness theorem was proved for the flow about a thin airfoil [25]. 

The critical value k e of the parameter k at which the flow first becomes locally sonic is de- 
freed as 

1 -- kc# x (0, 0, kc) = 0. (2) 

The boundary condition can be imposed at y = 0, as has been justified in [26]. The transonic 
small-disturbance equation admits solutions with local supersonic flow containing weak shocks 

[27, 28]. Moreover, it is a local model near the sonic line [29] and an exact equation for a hy- 
pothetical gas ('Tricomi Gas') [12]. In general it is not known if the solution of the full equation 
will converge in the corresponding limit to the solution of the approximate equation, but for 
the case of the wavy wall it is obviously true [22]. To get the parameter expansion, equation 
(1) is written as 

zx$ = (la) 

and the successive iterations are 
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A¢(1) = 0, (3) 

A¢ (2) = k~xO) CxxO), 

z~¢ o r )  = kCx(N - -  1 ) ~ ) x x  ( N  - -  1 ), 

where for convenience only the next order in k has to be kept at each step. The formal solution 

¢(x,y, k) = ~ ahntnkie-my y I sin (n.x) (4) 

was calculated by Kaplan [23] up to N = 8 and turned out to be without errors. Kaplan's co- 

efficients served to debug a fortran program that gave 40 terms in k. This result might be con- 

sidered optimal because all three limiting factors came together at this point: execution time 

was 25 minutes in IBM 3033 and is proportional to N s ; storage was nearly one million bytes 

and ~ N  4 ; quadruple precision was used equivalent to about 34 decimal places - the loss of ac- 

curacy allowing one to get only a few more terms. The loss of  digits was determined by runs 

with fewer decimal places on other computers (CDC6400, Cray-1). The following analysis is 

restricted to the maximum-speed series Umax = Umax (k) = U(0, 0, k). By the same series the 

velocity at the trough is computed using 

0, x)  = - u (0,  0 , -  k).  (5) 

The coefficients for Urea x are given in Table 1. 

4. Analysis of the maximum-speed series 

The critical value k e is not known in advance and is calculated from 

n 

y. aik i (n) = 1 (6) 
i=1 

approximating equation (2). Since a~ > 0, every polynomial equation has exactly one positive 

solution k(n). The k(n) decrease monotonically for n = 1,2 . . .  and form a sequence converging 

to ke if the maximum speed series has a radius of convergence ko ~ kc. Otherwise an extra- 
polation would lead to an erroneous result. The first case is assumed, since the differential 
equation is elliptical for k < ke and, as will be shown, the analyticity terminates at k = ko. 
Looking at the convergence of k(n) from (6) for different right-hand sides instead of i confirms 
the assumption. The critical value was determined as 

ke = 0.8253, (7) 

the four digits being considered as definite. 

The analysis of  the power series - or, more precisely, the function represented by the series 
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Table 1. Coefficients for max. speed sezies 

0.100000000000000000 
0.500000000000000000 
0.104166666666666674 
0.234027777777777768 
0.701909722222222232 
0.207975115740740755 
0.706670235339506156 
0.236367861689814813 
0.857721065297067923 
0.307233174527883159 
0.116196819850933525 
0.435026855823935539 
0.169328334031523860 
0.653896820555007493 
0.259999587798802811 
0.102738903781264347 
0.415300699140180051 
0.167048413967045370 
0.684235204449248433 
0.279153035242287731 
0.115588671763974657 
0.477076708505482578 
0.199346261517804764 
0.830775133387831696 
0.349837314729274268 
0.146996483551611265 
0.623152374979021094 
0.263695266434290305 
0.112441832142358219 
0.478746999569113400 
0.205197418333933500 
0.878411717817077760 
0.378231989859059104 
0.162692579126353178 
0.703423169365990349 
0.303870726559031214 
0.131872101296252355 
0.571876297249282458 
0.249019354482231129 
0.108368009663787513 

D+01 
D+00 
D+01 
D+01 
D+01 
D+02 
D+02 
D+03 
D+03 
D+04 
D+05 
D+05 
D+06 
D+06 
D+07 
D+08 
D+08 
D+09 
D+09 
D+10 
D + l l  
D + I 1  
D+12 
D+12 
D+13 
D+14 
D+14 
D+15 
D+16 
D+16 
D+17 
D+17 
D+18 
D+19 
D+19 
D+ 20 
D+21 
D+21 
D+22 
D+23 

- h a s  to be done in the complex k-plane, for the convergence might be limited by a non-real 

singularity. In the paper by Gaunt and Guttmann [30] an account of the most used methods is 

given. If  the nearest singularity is of algebraico-logarithmic type, as often encountered in fluid 
mechanics and critical phenomena problems, then the Domb-Sykes plot, an[a n _ 1 vs. 1/n, will 
approach a straight line; the singularity is easily extrapolated and higher polynomial inter- 
polations in 1In (Neville table) will settle down. The other widely used method is the Pad6 ap- 

proximation which gives a picture of the location of singularities through its poles and zeros. 
Not much is known about convergence of Pad6 approximation except for the Stieltjes and 

Hamburger eases [33, 34]. Pad6 approximations for umax (k) gave the simple picture of only 
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two singularities located on the real axis, a positive and a negative one, both of modulus close 

to the critical value ke. This provided an explanation for the waviness in the Domb-Sykes plot 
and offered a remedy: to map away one singularity by an Euler transformation or to treat even 

and odd terms of the series separately. Either case led to visually straight plots and an extra- 
polated radius of convergence ko = ke + 3%. But the Neville table showed a slight continuous 
drift towards the critical value, the gap became smaller and smaller. It was exactly the same 
strange behaviour reported by Van Dyke and Guttmann [19] in the case of the M 2-expansion 

for the circle. Like them, I did not succeed in explaining it by means reported in [30], taking 

logarithmic derivatives, assuming confluent singularities, etc. 

Key to a successful analysis was the discovery that the coefficients were not only positive 

but proved to be moments with positive weight dw (x): 

t *  b 
a,, =J bx"dw (x) (=) f xnp (x) dx (8) 

(the first integral is understood in Stieltjes's sense, the second representation is valid under ad- 

ditional conditions for w(x)). 
The power series can be represented then as 

dw (x) b p(x) dx (9) 

The moment property is valid, iff the Hankel determinants are positive: 

ao al a2 I I:: a'l >° o,  -- 0 
ao ~ O, a2 a2 a3 a4 

Naturally, this has been verified only for the fmite number of coefficients of the power series, 
but the tendency raises no doubts that the positiveness will continue. The determinants proved 
to be very sensitive to round-off errors, so that an accuracy of the coefficients to ten digits was 

required, as discovered by a run on another computer admitting slightly fewer digits. 
The moment problem, i.e. recovering the weight distribution from the moments, has a long 

tradition and is closely connected with some other fundamental areas of mathematics. Many 
results are found in Akhieser's book [31]. The Gauss quadrature formula with a distribution 

dw(x) on the interval can be constructed from the moments alone [32] and is for an integrand 
1/(1 - kx) identical with the (N -- l/N) Padd approximation for the moment series. They are 
convergent in this case [33, 34]. The corresponding orthogonal polynomials satisfy recursion 
formulars, whose coefficients allow conclusions on the behaviour of the weight function [35]. 
Outside the interval of orthogonality, under recently weakened conditions [36], asymptotic 
behaviour of the quotients of these polynomials has been proved. The moment problem is also 
connected with the theory of continued fractions. Some of these relations have been used for 

the analysis of Urea x ; they confum the results given below or are at least not in contradiction to 
them. In principle all of the information is contained in the discrete approximation for p (x) 
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that was calculated from at (/3~) (the discrete approximation for dw(x)) by dividing through the 
distribution of the zeros ~i, approximately given by ~ -/3 i_ 1 vs. (/3 t +/3~_ 1)/2. The approxi- 
mation for p (x) is shown in Figure 2. The a t and/~i were determined as corresponding weights 
and knots of the Gauss quadrature formula according to the method given in [32]. At the same 
time 1//3 i is a pole and oq//3 i is the corresponding residue of the (N-- l/N) Pad6 approximation 
to the power series. 

Figure 2 shows clearly that there is an exponentially small singularity at k = - k c, whereas 
the behaviour near k = k e remains uncertain. The analysis carried out separately for the even 
and odd parts of the power series did not clarify the situation completely but supported the as- 
sumption that the interval of support will be ( -  like, like) , since the corresponding weight distri- 
butions were nearly coincident close to the point in question. The analysis was possible because 
both turned out to be moment series too, with a positive interval of support, thus being of the 
well-known Stieltjes type. If the interval of support is the same for the even and for the odd 
parts, then the interval for the entire series is symmetrical near zero. There is a second more 
convincing argument. The velocity at the bottom of the trough is given by the maximum-speed 
series through (5) and therefore also as a moment series with weight distribution -- p ( -  x). 
From the moment representation it follows that there does not exist an analytical continuation 
over the singularities given by the reciprocals of the interval ends, as known from the theory of 
moments. If the interval of support does not reach like, then the maximum speed would con- 
tinue to be analytical for k exceeding the critical value. At the same value there would be a 
break-down at the bottom of the trough, where the differential equation is still elliptical. 
Therefore it will be assumed that dw(x) > 0 on ( -  1/kc, like): 

fl/hc dw(x) ( )fl/ke p(x)dx (11) 
U r e a  x = U (O,O,k) =n=o ~ ankn =J-l/kc 1 - k x  = "-l/k c 1-kx  

5. Discussion and conclusion 

From the representation of the maximum-speed series as an integral with positive weight dis- 
tribution, it follows that the maximum speed is an analytic function of the similarity para- 
meter k, as long as nowhere in the flow field the local velocity of sound is reached. This 
analyticity ceases to exist when the flow first becomes sonic. The break-down of analyticity in 
k seems to be a global feature in contrast to analyticity in the co-ordinates. This does not imply 
directly that the mixed boundary-value problem is not well posed, since that would require 
unsteadiness in k, but shows that exceeding the local velocity of sound is critical. 

It will be conjectured that the extraordinary structure of the maximum function will hold 
for other geometries or parameter expansions too, since the maximum speed, being subsonic, is 
a monotone function of the free-stream Mach number, at least for symmetrical profiles [12]. 
This conjecture is supported by similar behaviour for the M2-expansion for the circle con- 
cerning its positiveness and for the drifting of the Neville table reported by Van Dyke and Gutt- 
mann [19]. 

The disagreements between theoretical arguments for non-existence of smooth transonic 



205 

Table 2. Zeros and weights for corresponding Gauss quadrature formula 

--4.30148469831711178 
- -  3.94726668724070429 
- -  3.49621086034580308 
- -  2.95146969956890670 
- -  2.32388384828863459 
-- 1.62793554633976156 

-- 0.877770177652766673 
-- 0.0454166971703261445 

0.313735784949430691 
0.987734676980918200 
1.67774475639938259 
2.34284996903925236 
2.95563376349214613 
3.49445973903366003 
3.94231850876617895 
4.28778772681974294 
4.52977268589428506 

ai 

0.000000599231103220671489 
0.0000174503075902077571 

0.000277656360949791146 
0.00117075363480424044 
0.00412845781185060007 
0.0109596936716737830 
0.0231464912800360013 
0.0453128008193010223 
0.0704224426277678256 
0.107785006285090051 

0.131312324035862779 
0.158683359036653898 
0.151054080250720812 
0.137697346293580491 
0.0930433955894373332 
0.0514105261083624742 
0.0135776166552164347 

i•ffi ~i [b  dw(x) 

X 

: I ! 

Figure 2. Weight function 
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flow, experiments and numerical results can be explained through an interpretation of  the re- 

covered weight distribution. It is seen from Figure 2 that the weight is very small at the interval 

ends, at least at one end even exponentially small, so that it seems unlikely that any discreti- 

sation method for the differential equation could approximate it correctly. But the cutting off 

of  the distribution, leading to a smaller interval o f  support, would be equivalent to a greater 

range of  convergence. Thus G.I. Taylor's results were already optimal, showing a convergence 

by some per cent above the critical Mach number. The extremely small singularities, cutting 

purely subsonic flow from a mixed subsonic-supersonic one, were difficult to detect and have 

led to erroneous results concerning the existence of  transonic shock-free flow. 
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